Please note that our Terms & Conditions and Privacy Notice are applicable.
On Promotion in Online & Essential Services
Pay & Ship
Buy with confidence. Secure payment options & nationwide delivery. Learn more
Filter & refine
Clear All
Results for Online Classes & Tutoring in Parktown in Parktown
In my part time I analyse, interpret and write up chapter 4/5 thesis, in 3-5 days. I am an experienced STATISTICIAN/RESEARCHER and PHD Finalist (University of Pretoria), with 15 plus years’ experience in quantitative analysis. My experience is specifically on cross sectional and longitudinal research (econometric models and survival models) processes. I have also supervised Masters thesis. My profiles online for more
https://www.linkedin.com/in/christopher-manyamba-04490713/
http://oasis.col.org/handle/11599/3934?show=full
https://www.up.ac.za/news/post_1722144-up-student-wins-fellowship-to-study-womens-empowerment-index
https://researchspace.ukzn.ac.za/handle/10413/8822
1. Proposal development: Intro, Literature review, Methodology (study design, approach, sampling, reliability, ethical issues)
2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;
3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;
4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);
5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);
6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;
7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results
8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;
9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);
10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;
11. Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate). If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
Whattsapp 0732177216
2y
For your chapter 4/5 thesis or research paper. Experienced STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in quantitative analysis. I am providing the following quantitative analysis and modelling expertise;
1. Proposal development including study design and sampling;
2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;
3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;
4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);
5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);
6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;
7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results
8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;
9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);
10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;
11. Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate). Turnaround time for analysis, interpretation and write up: In a space of 5 days;
If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
2y
Certificated Natural Scientist. Statistical Sciences.For your chapter 4/5 thesis or research paper. Experienced STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in quantitative analysis. I am providing the following quantitative analysis and modelling expertise;1. Proposal development including study design and sampling;2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;11. Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate). Turnaround time for analysis, interpretation and write up: In a space of 5 days;If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
2y
For your chapter 4/5 thesis or research paper. Experienced STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in quantitative analysis. I am providing the following quantitative analysis and modelling expertise;1. Proposal development including study design and sampling; 2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs; 3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data; 4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis); 5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis); 6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis; 7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results 8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests; 9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs); 10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation; 11. Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate). Turnaround time for analysis, interpretation and write up: In a space of 5 days; 12. If you need to self-tutor STATA, you can get a STATA version 15-30-day trial on https://www.stata.com/customer-service/evaluate-stata/. 072 3548043
4y
Ads in other locations
1
SavedSave
50% off for the months of January AND February!! So classes are only R90!!
Classes hosted online(Google meets, zoom or even WhatsApp video call if you wish)
8h
Johannesburg South1
I have over 15 years experience in Financial Reporting and am currently offering tutoring lessons for Tertiary and High School Students at a rate of R300 for a 2hr lesson. First lesson FREE
4mo
Fourways1
I have over 15 years experience in financial reporting and am currently offering tutoring lesson for 2hrs at a rate of R250 with the FIRST lesson being FREE.
4mo
Fourways1
I have over 15years experience in financial reporting and 7 years experience tutoring tertiary and high school. I offer online class for a fee of R200 for 1:30hr class. First lesson FREE
5mo
Bryanston1
ONLINE TUTORING AND ASSIGNMENTS ASSISATANCE AVAILABLE FOR AUDITING, TAXATION, FINANCING ACCOUNTING, FINANCIAL MANAGEMENT, MANAGEMENT ACVOUNTING, INTERNAL AUDITING ETC AVAILABLE AT AFFORDABLE FEES
8mo
Johannesburg CBD1
MANCOSA ONLINE TUTORING AND EXAMS COACHING FOR AUDITING, TAXATION, FINANCIAL ACCOUNTING, MANAGEMENT ACCOUNTING, INTERNAL AUDITING FINANCIAL MANAGEMENT AVAILABLE AT AFFORDABLE FEES
6mo
Johannesburg CBD1
SavedSave
Online Tutoring and Assigment assistance available from seasoned Tutors with Guranteed excellence.
8mo
RandburgLesson 1: The first lesson is meant to be an introduction to the desktop program, solutions, and the installation of the program itself.
---------------------------------------------------------------------
Lesson 2: The second lesson involves the dashboard for the program’s desktop. It would involve going such things as excel data, dashboards, working with the creation and modification of reports, etc.
-----------------------------------------------------------------
Lesson 3: The third lesson is on data sources like, CSV
files and Excel.
-----------------------------------------------------------------------
Lesson 4: The fourth is about visualizations in regards to text, charts, etc.
-------------------------------------------------------------------------
Lesson 5: The fifth lesson covers data selection such as, using slicers and filtering data.
-------------------------------------------------------------------------
Lesson 6: The sixth covers learning how to enhance the dashboards, like shapes, colors in the background, text boxes, etc.
-----------------------------------------------------------------
Lesson 7: In the seventh lesson, you will learn about
PowerBI.com and what it includes. Among other things, it would include learning about how to share the dashboards as well as creating new ones, gateways, and how to use the files on the Desktop.
----------------------------------------------------------------------
Lesson 8:The final lesson is about best practices, like stakeholders, system impact, and learning how to design your reports and dashboards.
-----------------------------------------------------------------------
1y
SandtonSavedSave
For your chapter 4 and 5 thesis chapter. Experienced STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in quantitative analysis.
See https://www.up.ac.za/news/post_1722144-up-student-wins-fellowship-to-study-womens-empowerment-index
My Linkdin profile: https://www.linkedin.com/in/christopher-manyamba-04490713/
Also see https://researchspace.ukzn.ac.za/handle/10413/8822
I analyse, interpret and write up Chapter 4 (15-25 pages, or more), which you then discuss in Ch5.
Overall I provide the following quantitative analysis and modelling expertise;
1. Proposal development including study design and sampling;
2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;
3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;
4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);
5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);
6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;
7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results
8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;
9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);
10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;
11. Turnaround time for analysis, interpretation and write up: In a space of 5 days;
If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
1y
3
SavedSave
French and german tutoring
bonjour,
guten morgen,
frohes neues jahr 2024
je suis jeanette a french and german
teacher i'm a masters degree holder in business administration and economics
i worked in the educational system for seventeen years now
i'm well travelled and will like to teach french
or german to individuals or groups of people
i normally start with the grassroots level, intermediate and advanced level
please don't hesitate to contact me for your
french or german lessons on the
0027612069565
bien a toi,
2y
SavedSave
In my part time I analyse, interpret and write up chapter 4/5 thesis, in 3-5 days. I am an experienced STATISTICIAN/RESEARCHER and PHD Finalist (University of Pretoria), with 15 plus years’ experience in quantitative analysis. My experience is specifically on cross sectional and longitudinal research (econometric models and survival models) processes. I have also supervised Masters thesis. My profiles online for more
https://www.linkedin.com/in/christopher-manyamba-04490713/
http://oasis.col.org/handle/11599/3934?show=full
https://www.up.ac.za/news/post_1722144-up-student-wins-fellowship-to-study-womens-empowerment-index
https://researchspace.ukzn.ac.za/handle/10413/8822
1. Proposal development: Intro, Literature review, Methodology (study design, approach, sampling, reliability, ethical issues)
2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;
3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;
4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);
5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);
6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;
7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results
8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;
9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);
10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;
11. Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate). If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
Whattsapp 0732177216
2y
5
SavedSave
French and German Tutoring
Bonjour,
Guten Morgen,
Frohes neues Jahr 2024
Je suis Jeanette a French and German
Teacher. I'm a Masters degree holder in Business administration and economics.
I worked in the educational system for seventeen years now.
I'm well travelled and will like to teach French
Or German to individuals or groups of people
I normally start with the grassroots level, intermediate and advanced level.
Please don't hesitate to contact me for your
French or German lessons on the
0027612069565
Bien a toi,
2y
For your chapter 4 and 5 thesis chapter. Experienced STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in quantitative analysis.
See https://www.up.ac.za/news/post_1722144-up-student-wins-fellowship-to-study-womens-empowerment-index
My Linkdin profile: https://www.linkedin.com/in/christopher-manyamba-04490713/
Also see https://researchspace.ukzn.ac.za/handle/10413/8822
I analyse, interpret and write up Chapter 4 (15-25 pages, or more), which you then discuss in Ch5.
Overall I provide the following quantitative analysis and modelling expertise;
1. Proposal development including study design and sampling;
2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;
3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;
4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);
5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);
6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;
7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results
8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;
9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);
10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;
11. Turnaround time for analysis, interpretation and write up: In a space of 5 days;
If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
0723548043
2y
For your chapter 4/5 thesis or research paper. Experienced STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in quantitative analysis. I am providing the following quantitative analysis and modelling expertise;
1. Proposal development including study design and sampling;
2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;
3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;
4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);
5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);
6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;
7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results
8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;
9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);
10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;
11. Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate). Turnaround time for analysis, interpretation and write up: In a space of 5 days;
If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
2y
2
SavedSave
French and German Tutoring
Bonjour,
Bonne et heureuse année 2024.
Guten Morgen,
Frohes neues Jahr 2024
Je suis Jeanette a French and German
Teacher. I'm a Masters degree holder in Business administration and economics.
I worked in the educational system for seventeen years now.
I'm well travelled and will like to teach French
Or German to individuals or groups of people
I normally start with the grassroots level, intermediate and advanced level.
Please don't hesitate to contact me for your
French or German lessons on the
0027612069565
Bien a toi,
2y
SavedSave
For your chapter 4/5 thesis or research paper. Experienced
STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in
quantitative analysis. I am providing the following quantitative analysis and
modelling expertise;
1.
Proposal development
including study design and sampling;
2.
Univariate analysis: Frequencies. Means and
std deviations for continuous data, tables and graphs;
3.
Bivariate analysis:
pairwise correlation, Spearman’s for non-parametric and Pearson’s for
normally distributed data;
4.
For Likert scale data, reliability (Cronbach’s alpha) and
normality tests (Wilk Shapiro
tests, skewness, kurtosis);
5.
Hypothesis testing
-parametric tests e.g. paired t-tests, and non-parametric tests (e.g.
Wilcoxon sign rank, Kruskal Wallis);
6.
Multivariate-Regression analyses which cover
ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS),
Partial/Pooled effects; Factor/Principal component analysis;
7.
Pathway
Analysis and Structural
Equation Modelling (SEM), and its
post estimation results
8.
Time-series,
Econometric Models: Autoregressive
Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL)
family models. The stepwise analysis includes setting data to time series,
white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root
tests (VAR), Vector error correction models (VEC), Granger causality tests;
9.
Survival analysis (epidemiological): Includes
setting data to survival, run descriptive stats with survival analysis family
of analysis. Survival analysis: Censoring, prevalence and incident rates,
regression models e.g. Cox proportionate regression, interactions (log-rank,
and Kaplan Meier survival functions graphs);
10.
Checking multicollinearity/endogeneity-Variance
Inflation Factor (VIF in STATA), or any pre-model estimation;
11.
Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate).
Turnaround time for analysis, interpretation and write up: In a space of 5 days;
If you need to self-tutor STATA, you can get a
STATA version 15-30-day trial
2y
Save this search and get notified
when new items are posted!
