Please note that our Terms & Conditions and Privacy Notice are applicable.
On Promotion in Online & Essential Services
Pay & Ship
Buy with confidence. Secure payment options & nationwide delivery. Learn more
Filter & refine
Clear All
Results for Online Classes & Tutoring in City Centre in City Centre
For your chapter 4/5 thesis or research paper. Experienced STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in quantitative analysis. I am providing the following quantitative analysis and modelling expertise;
1. Proposal development including study design and sampling;
2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;
3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;
4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);
5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);
6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;
7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results
8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;
9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);
10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;
11. Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate). Turnaround time for analysis, interpretation and write up: In a space of 5 days;
If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
1y
4
SavedSave
Realistic 3d Renders for architecture and interior design firms. If interested please contact. See some of the works I did below
1y
For your chapter 4/5 thesis or research paper. Experienced STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in quantitative analysis. I am providing the following quantitative analysis and modelling expertise;
1. Proposal development including study design and sampling;
2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;
3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;
4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);
5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);
6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;
7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results
8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;
9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);
10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;
11. Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate). Turnaround time for analysis, interpretation and write up: In a space of 5 days;
If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
1y
For your chapter 4/5 thesis or research paper. Experienced STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in quantitative analysis. I am providing the following quantitative analysis and modelling expertise;1. Proposal development including study design and sampling;2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;11. Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate). Turnaround time for analysis, interpretation and write up: In a space of 5 days;If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
4y
For your chapter 4/5 thesis or research paper. Experienced STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in quantitative analysis. I am providing the following quantitative analysis and modelling expertise;1. Proposal development including study design and sampling;2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;11. Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate). Turnaround time for analysis, interpretation and write up: In a space of 5 days;If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
4y
SavedSave
For your chapter 4/5 thesis or research paper. Experienced
STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in
quantitative analysis. I am providing the following quantitative analysis and
modelling expertise;
1.
Proposal development
including study design and sampling;
2.
Univariate analysis: Frequencies. Means and
std deviations for continuous data, tables and graphs;
3.
Bivariate analysis:
pairwise correlation, Spearman’s for non-parametric and Pearson’s for
normally distributed data;
4.
For Likert scale data, reliability (Cronbach’s alpha) and
normality tests (Wilk Shapiro
tests, skewness, kurtosis);
5.
Hypothesis testing
-parametric tests e.g. paired t-tests, and non-parametric tests (e.g.
Wilcoxon sign rank, Kruskal Wallis);
6.
Multivariate-Regression analyses which cover
ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS),
Partial/Pooled effects; Factor/Principal component analysis;
7.
Pathway
Analysis and Structural
Equation Modelling (SEM), and its
post estimation results
8.
Time-series,
Econometric Models: Autoregressive
Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL)
family models. The stepwise analysis includes setting data to time series,
white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root
tests (VAR), Vector error correction models (VEC), Granger causality tests;
9.
Survival analysis (epidemiological): Includes
setting data to survival, run descriptive stats with survival analysis family
of analysis. Survival analysis: Censoring, prevalence and incident rates,
regression models e.g. Cox proportionate regression, interactions (log-rank,
and Kaplan Meier survival functions graphs);
10.
Checking multicollinearity/endogeneity-Variance
Inflation Factor (VIF in STATA), or any pre-model estimation;
11.
Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate).
Turnaround time for analysis, interpretation and write up: In a space of 5 days;
If you need to self-tutor STATA, you can get a
STATA version 15-30-day trial
3y
Ads in other locations
I am a PhD finalist at University of Pretoria and have vast experience in research and in individual subjects assignment assistance to students. Been a Tutor, assistant lecturer, marker, and thesis supervisor.1. THESIS/DISSERTATION- Proposal writing (Chapter 1-3)-Thesis/Dissertation Writing (Chapter 4-analysis and Chapter 5-discussion)-Editing, plagiarism2. ASSIGNMENT ASSISTANCE (space of 3 days)MASTER OF BUSINESS ADMINISTRATIONBusiness Research Economics Emotional and Spiritual Intelligence Entrepreneurship Innovation Operations and Supply Chain Management Strategic Human Resource Management Strategic Financial Management Strategic Management Strategic Marketing ManagementPOSTGRADUATE DIPLOMA IN BUSINESS MANAGEMENT (PDBM)Advanced Project Management Advanced Human Resource Management Financial Management and Management Accounting Organisational Strategy, Planning and Management Fundamentals of Business ResearchDOCTORATE OF BUSINESS MANAGEMENT (DBM)Research at a Doctoral Level3. PORTFOLIO OF EVIDENCE (POE)Assistance with Formative AssessmentsTurnaround time: average is 3 daysWhatsApp: 073 217 7216
3y
SavedSave
For your chapter 4 and 5 thesis chapter. Experienced STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in quantitative analysis. See https://www.up.ac.za/news/post_1722144-up-student-wins-fellowship-to-study-womens-empowerment-indexMy Linkdin profile: https://www.linkedin.com/in/christopher-manyamba-04490713/I analyse, interpret and write up Chapter 4 (15-25 pages, or more), which you then discuss in Ch5.Overall I provide the following quantitative analysis and modelling expertise;1. Proposal development including study design and sampling;2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;11. Software experience: Excel, SPSS, STATA, R, EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate). Turnaround time for analysis, interpretation and write up: In a space of 5 days;If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
3y
SavedSave
For your chapter 4/5 thesis or research paper. Experienced STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in quantitative analysis. https://www.up.ac.za/news/post_1722144-up-student-wins-fellowship-to-study-womens-empowerment-indexa. I analyse, interpret and write up Chapter 4, which you then discuss in Ch5.Overall I provide the following quantitative analysis and modelling expertise;1. Proposal development including study design and sampling;2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;11. Software experience: Excel, SPSS, STATA, R, EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate). Turnaround time for analysis, interpretation and write up: In a space of 5 days;If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
3y
Save this search and get notified
when new items are posted!
